Skip to content

Chapter 04. The pythonic way.

Because we are doing OO in python it is also useful to learn certain Python techniques that can be handy specially when dealing with large amounts of data.

-- "Ask for forgiveness, not for permission" --

Let's 'pythonize' the following snippet.

from typing import List, Tuple
from shapely.geometry import Point

def get_as_points_if_even(tuple_points: List[Tuple[float]]) -> List[Point]:
    def is_even(number: float) -> bool:
        return number % 2 == 0

    _list = []
    for p_tuple in tuple_points:
        if is_even(p_tuple[0]) and is_even(p_tuple[1]):
            _list.append(Point(p_tuple))
    return _list

_points = get_as_points_if_even([(1, 1), (2, 4), (3, 7), (4, 10)])

List comprehensions.

def get_as_points_if_even(tuple_points: List[Tuple[float]]) -> List[Point]:
    def is_even_tuple(p_tuple: Tuple[float]) -> bool:
        return all(_p % 2 == 0 for _p in p_tuple)

    return [Point(p_tuple) for p_tuple in tuple_points if is_even_tuple(p_tuple)]

Filter.

Returns an iterable when a condition is met.:

def get_as_points_if_even(tuple_points: List[Tuple[float]]) -> List[Point]:
    def is_even_tuple(p_tuple: Tuple[float]) -> bool:
        return all(_p % 2 == 0 for _p in p_tuple)

    return [Point(p_tuple) for p_tuple in filter(tuple_points)]

Map.

Returns an iterable of a callable applied in a collection of items:

def get_as_points_if_even(tuple_points: List[Tuple[float]]) -> Iterable[Point]:
    def is_even_tuple(p_tuple: Tuple[float]) -> bool:
        return all(_p % 2 == 0 for _p in p_tuple)

    return map(Point, filter(is_even_tuple, tuple_points))

_points = list(get_as_points_if_even([(1, 1), (2, 4), (3, 7), (4, 10)]))

Zip.

Returns an iterable of paired tuples:

_coords = range(1, 12)
_x_points = _coords[:4]
_y_points = _coords[0::3]
_points = list(get_as_points_if_even(zip(_x_points, _y_points)))

Lambda functions.

A lambda expression is nothing else than a 'inline method', we can use it in combination of the above generators / iterables.

_points: Iterator[Point] = get_as_points_if_even(zip(_x_points, _y_points))
# We are going to increment the y coordinates by two values:
_new_points = list(map(lambda _p: Point(_p.x, _p.y + 2), _points))

Iterators are 'consumed'. Once you iterate over them they will no longer contain data. Check what happens when you inspect _points now.

# These asserts are equivalent under Python's eyes.
assert not _points
assert len(_points) == 0

Dictionaries.

Very helpful in many ways, you can use it to store any kind of callable, iterable or python object and iterate over the entire collection.

Some basic snippets: - Declaring a dictionary:

simple_dict = {"a": 123}
# or
simple_dict = dict(a=123)
# but for both is possible:
simple_dict["b"] = 456
- Accessing a dictionary:
assert simple_dict.keys() == ["a", "b"]
assert simple_dict.values() == [123, 456]
assert simple_dict.items() == [("a", 123), ("b", 456)]
# this will raise:
_c_value = simple_dict["c"]
# But this don't:
_c_value = simple_dict.get("c", None)
- Providing the contents of a dictionary:
_profile_data = dict(points=_points, name="A Test Dike")
class DikeProfile:
    points: List[Point]
    name: str

    def __init__(self, points: List[Point], name: str) -> None:
        self.points = points
        self.name = name

_profile = DikeProfile(**_profile_data)
- Assigning the values of a dictionary directly to a class:
class DikeProfile:
    points: List[Point]
    name: str

    def __init__(self) -> None:
        self.points = []
        self.name = ""

    @classmethod
    def with_data_dict(cls, data_dict: dict) -> DikeProfile:
        _profile = cls()
        _profile.__dict__ = data_dict
        return _profile


_profile = DikeProfile.with_data_dict(dict(points=_points, name="A Test Dike"))
assert isinstance(_profile, DikeProfile)

Logging

It is quite common wanting to log the different steps or actions throughout your entire solution. This can easily be achieved with the library logging.

import logging

# Defining our logger.
_logger = logging.getLogger("")
_logger.setLevel(logging.DEBUG)

# Defining our custom formatter
_formatter = logging.Formatter(
    fmt="%(asctime)s - [%(filename)s:%(lineno)d] - %(name)s - %(levelname)s - %(message)s",
    datefmt="%Y-%m-%d %I:%M:%S %p",
)

# Adding a console handler
_console_handler = logging.StreamHandler()
_console_handler.setLevel(logging.INFO)
_console_handler.setFormatter(_formatter)
_logger.addHandler(_console_handler)

# Adding a file handler.
_log_file = Path(__file__).parent / "dikes_for_dummies.log"
_file_handler = logging.FileHandler(filename=_log_file, mode="w")
_file_handler.setLevel(logging.INFO)
_file_handler.setFormatter(_formatter)
_logger.addHandler(_file_handler)

Disposable classes.

A nice technique when wanting to create disposable objects that should realize initialization and finalize operations during a very specific period can be achieved with __enter__ and __exit__. A good example of this are file streams. But you may also think of your own logging (instead of default library logging) or your own wrappers around runners.

Example for a logger:

class ExternalRunnerLogging:
    ...
    def __enter__(self) -> None:
        _runner_name = self._get_runner_name()

        self._wrap_message(f"Initialized Runner Logging for {_runner_name}")

    def __exit__(self, *args, **kwargs) -> None:
        _logger = logging.getLogger("")
        _runner_name = self._get_runner_name()
        self._wrap_message(f"Logger terminated for {_runner_name}")
        _logger.removeHandler(self._file_handler)
And its usage:

def run(self):
    ...
    with ExternalRunnerLogging(self):
        ...
        try:
            ...
        except Exception as exc:
            logging.info(f"Error during runner execution {exc}")
            ...